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In this work, we understand bF the problem of adjoining, the problem of 
finding in some two-dimensional region D, the solution of the equation 
div(k grad p) = 0 under the condition that the coefficient k is a piece- 
wise continuous function of the x, y coordinates. On the boundaries y 
where the coefficient k is discontinuous the following conditions of 
adjoining must be fulfilled 

P+ = P-> k+(g)+=&)_ (1) 

Here the subscripts minus and plus denote the limiting values of the 
function at the boundaries y of discontinuity; II is the normal to y. 
The solution function p(x, y) has singularities of the logarithmic type 
in the region D, and if D has a boundary r, the function p(x, y) must 
satisfy on the r boundary conditions of the first, second, or third kind. 

This problem has many applications. For example, in underground 
hydromechanics a function p, which satisfies the conditions given above, 
determines the pressure field in a piece-wise inhomogeneous oil-contain- 
ing layer subjected to water pressure and to the linear law of ffltra- 
tion; in the electromagnetic theory, the function p yields the statistf- 
cal distribution of temperature in a piece-wise nonuniform heat con- 
ducting medium. The proposed problem is reduced by the method presented 
in flf and t21 to a singular integral equation (or a system of equations) 
for the determination of the solution function p(x, y) on y. The 
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resulting equation is then in turn reduced to the generalized Riemann 

problem [41 by the use of the properties of integrals of the Cauchy- 

Hadamard type. The solution of the obtained generalized Riemann problem 

can then be easily obtained in a number of cases. Among the concrete 

problems of adjoining considered in this work are the following: 

1. The region D is the entire plane. The boundary y is the real axis. 

It divides D into two subregions: the upper half-plane D,, in which k 

takes on the value k, = const, and the lower half-plane D_, in which k 

takes on a value kg = const. At a certain point A(x,,,yo) 6 D,, the func- 

tion p has a logarithmic singularity. 

2. The region D is the entire plane; the boundary y is the circum- 

ference of a circle of unit radius. The region D+ is the interior of 

this circle where k = k, = const. and p has a logarithmic singularity 

at a point A(r,, 8,); D_ is the exterior of this circle, where k = k2 = 

const. 

3. The region D is the interior of a circle of unit radius; y is the 

diameter of this circle which coincides with the real axis. In the 

region D,, given by (I z( < 1, Im z > 0, z = x + iy), the coefficient k 

is k, = (bly + Q2. and the function p has a singularity at the point 

A(q,, yo). In the region D_ given by (Iz( < 1, Im t < 0) the coefficient 

k is k2 = (b2y + c~)~. When (~1 = 1, the function p = 0. 

4. The region D is a rectangle: - a < x < 6, - p <y < 8. The equa- 

tion of the boundary y is x = a. In the region D+2(- a f x < a, - p f 

y< p) the coefficient k is kl = (al + blx + cly) and P(X, y) has a 

singularity at the point A(xo, yo). In the region D_(a < x < 6, - p f 

y <p) the coefficient k is k2 = (a2 + b2x + c~Y)~. On the boundary of 

0 the function p = 0. 

The first two of these problems have been solved before by methods 

different from ours. Their inclusion in this article makes it possible 

for us to demonstrate the usefulness and correctness of our new approach 

to the solution of problems of adjoining by comparing our results with 

those obtained earlier. 

Finally. we shall show that the problems of adjoining arise in many 

areas of physics and mechanics such as the theories of electromagnetism, 

heat conduction, underground hydromechanics and others. 

Let us consider the first one of the four mentioned problems. 

We shall seek a function p(x, y) in the regions D, and D_ of the 

forms 
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p+ (2, Y) = $ ydt 
P (8 (t _ x)2 + ya + G 

p- (2, Y) = - -+ 5 ydt 
p Q) it - %)a + ya 

-co 

respectively. Here p(t) stands for the unknown function on the real 

axis; G is Green’s function for the upper half-plane 

C=&ln 
(z - 2oY + (Y - YO12 

1 b - zoja + (Y + YOP 
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(2) 

(3) 

The quantity Q is the intensity of the source at the point A(%,,, yo). 

The solution of the assumed form satisfies the first one of the condi- 

tions (1) identically; the second one of these conditions yields the 

following integral equation for the determination of p(t): 

0;) 

s P 0) (t d”,)P = Q 
kl + ks @ - ~3 4 YO= 

4, 

(5) 

For the solution of this equation we introduce the piece-wise 

analytic function 

Q, (4 = & y P 0) g$ 
---a) 

The limiting values of this function and of its derivative have the 

form 

Here, the integral in the first formula is interpreted to mean the 

Cauchy principal value, while in the second formula it is taken in the 

Cauchy-Hadamard sense. With the aid of (6). equation (5) is reduced to 

the following Riemann problem: 

QYO 1 
@‘+ tx) + @‘- tx) = ni (/cl + k2) (I _ zo)2 + yo2 

or, with the introduction of a new function ol(z), to the form 

Q?l” f.&+ - f#ll- = P- 

1 
nl (k, t kz) (x - ~0)~ + yo* 

(7 

This is the simplest problem of determining a function by its dis- 

continuity. The solution is given by an integral of the Cauchy type 
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1 4” 
(4 = 

s ni (kl + b) [(t --zo12 Y021 (t 4 

us denote density integral by q(t). 

Suppose 9(t) = q+(t) + 9-(t). where 9’(t) and 9-(t) are the boundary 

values of functions that are analytic in D, and fl_. Then, on the basis 

of Cauchy’ s formula we have 

@‘1+ (4 = ‘p+ (4 + cp- (a), 

Since 

QY~ 1 
cp (4 = 

ni (b + k2) (t - zoJ2 + yo2 = 

then 

ml- (z) = - ‘p- (4 + cp- (-1 

Q 1 i i 3 

2ni (ICI+ k2) t-x0-iy, - t-xo+iyo 1 

Q - 1 1 
@I+ (Z) = 2r, (k1 + k*) z - To ’ 

ml- (2) = Q - 
2n (/cl + k2) z - ZO 

and, since O’+ = Ol+, O’- = - a),-, we find, by formula (6). that 

P(X) = s Q (x - x0) dx Q 
n (kl + k2) (2 - x0)2 + yo2 = 2n (kl + k2) 

{In [ix - x0J2 + ~021 -I- cd 

Thus, on the basis of the formulas (2), and (3). we have 

PI+ (2, Y) = rt Q 
1 0x 2i (In [(t - x012 + Yo21 + cd 

~JC (h f k2) IrnSi s t-z dt 

---a, 

In accordance with Cauchy’s formula we obtain 

PI* h Y) = 2n (k;+ k2) In 1(x - ~0)~ + (Y f YOYI + c 

P+ (5, Y) = PI+ (x, Y) + G, p- (2, Y) = p.- (2, Y) 

Direct verification shows that the functions given by (8) and (9) 

satisfy the required conditions. 

In the second problem it is convenient to use the notation 

z = rP, zo = roe i0, 
, 

The solution is sought in the form 

2x 

1 c 1 - r2 
p+ (rr6) = 5. p (4 i - 2r cos (0 _ 6) + r2 

da + G 

0 

(8) 
(9) 

(10) 
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(11) 

where 

C=& 
rzr$ - 2rro COS (0 - 00) + 1 

1 
In -yoc 2rrO COS (0 - f3O) + P 

The second condition of adjoining leads to the following integral 

equation for the determination of p(o) 

2x 

1 . s P (4 dJ Q ( ro2 - 1 
-zi sin” (5 -$)/F = 2n (kr + ks) 1 - 2r0 cos ($ - 00) + r$ + i) (12) 

0 

The integral on the left-hand side is here understood in the Cauchy- 

Radamard sense. For the solution of this equation we introduce a func- 

tion o(z) and its derivative 

The limiting values of o’(z). as z approaches the circumference 

IZI = 1, are equal to 

Hence 

277 
1 

s 

da 

4n p (‘) sin” I(5 - 9)/Z] = - (@‘+ (0) + W- (0)) 

0 

P(N = 
w+ (0) - w- (0) do 

0 

The equation (12) is thus reduced to the Riemann problem 

(13) 

(14) 

Q 
@‘+ + @‘- = 2n (kr + ks) ( 1 - r,l 

1 - 2r0 c0s (9 - OO) + r$ - i) 

Solving this problem, we obtain by means of (14) the function p(o) 

p(o)=- 2n (/cl f ka) Q [In(o--J-)+ln(~--ZO)-lno]+c, 

Finally, from (10) and (11) we obtain 

P+ (r, 0) = - n tklQ+ k2) In 1/r%+? - 2rro cos (O - eo) + 1 + G + c 
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P- k‘ 8) = - -$$ c/QQ+ ka) tin I’+ - 2PP, cos (0 - eo} + ro= - ln r) - i&Y& Inr+c 

In the problems 3 and 4 we pass from the functions p*(s, y) to 
harmonic functions a*(~, y) by means of the substitutions 

p+ 1/&T- IL+ + 
Q 

2x Jfk; ” 
p-v7& u- (15) 

where k, is the value of the coefficient kI at the point A(xo, yo). 

The conditions of adjoining on y for the functions uf take the form 

In problem 3, the solution, which satisfies the conditions (16). 

sought in the form 

IL* (2, y) = f 5 { 1 1 
YU (4 (qy - %)a + y% - (1 - zz)B + r%’ 1 d.S 

-1 

I 

u-P, Y) = - 5 s -l YU W 
1 1 

(T - r)Z + ya - (I-Tz)a++ya d* 1 
-1 

Condition (17) leads now to an integral equation for U(Z) 

1 l s -i u (4 
1 

u (4 - z 
ix (z, 20) -- 

(T _ %)a (1 &s dT - Pi aZ 1 1 = 0 
i/=0 

-1 

Here 

(2 - 20) (2 - 20-9 

G (2, 4 = In tz _ ;o) (a _ G-1) 

is Green’s function for the semicircle 

Let us introduce the piece-wise analytic function 

iS 

w 

(19) 

(20) 
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and its derivative a’(z). 

With the aid of these functions, equation (2) can be reduced to the 

generalized Riemann problem of finding a piece-wise analytic function 
from conditions given on the real axis 

@‘+ (x) + ia@+ (x) = - (0” (xj + iacft- (2) - afif (2) for Isl<i 

a’+ (4 + -$-CD+ (xj = - cp’- (2) + $- W(x) + $f (+) for I x I> 1 

where 

f (4 = (x_;o;i+yo. - 
2iyo (20~ + yo? 

1% (a? + !/OS) - ro1* + $4 

Solving this problem, and making use of the formulas of Sokhotskii 
for the limiting values of the function (0 on y, we find that. for 

IA < 1 

u (2) = F (z) - BX co9 ax - Ba sin a2 

where 

B = F (1) + F (- 1) F PI - F(- u 
1 2 cos a ’ Ba = 2 sin a 

F (4 co9 ff (z - zO) In 0 V(Z - 20)~ + YO*- sin a b-~0) 
“-_5 

-4 - - 

YO 1 

SYO 

- exp x0” + yea I cosa(z- zo) Ina 1/ (z-20)*+ y”* 
- 60’ + Yo’)’ 

- sin a (x - 20) ~a-1 (x - 20) bo’ + Yo”) 
Yo I 

+ 

+ PO c 
C-V a1 (‘r/(x - x0)* + Y# cos 

L 

Q tx z- ZO 

n.n! - $0) + n un-’ - 
I 

- 
310 

- exp w0 

x0’ + yes 
2 6-V a” ( V (+ - xola + aroS I (soa + y,l,l) n X 

s*sl 

x co9 u. (x - 20) + II tar’ 
(x - 20) boa + y’o) 

YO n 
Here. the summation on n (and later on m) is performed from 1 to m. 

Omitting the details, which are analogous to the preceding ones, we now 
give the result for the fourth problem 
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xx (- I)% . mrc (~0 + a) 
m2 j rJa + $ / p” s’n 2a I 

‘4- (5, Y) = 4Q (d + CZY) 
a2Pn (~1 + hr0 + ~1~0) 

2 p4~~+--2)m x 

I * inn (8 - 4 / 331 

X sin inn (Y + PI / 31 sin Inn (~0 + P) I281 

C (c + ClY) coth 
?+ 

(d + c2Y)2 
c + ClY 

coch nn (6 - a) 

I 

n _- e + fy 
X 

33 33 (c + av) Js 

xX (- l)mm 
m2/aa + na/ pa 

sin ma (% + a) 
2a 1 

where 

c = a1 + blu, d = aa + bzr, e = cbl -dbl, f = blcl - hs 
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